Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Nanobiomed Res ; 2(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35872804

RESUMO

In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influence phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHH) cultured in a commercially available perfused bioreactor. A 3D printing-based alginate microwell system was designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver were engineered to replace polystyrene scaffolds, and the biochemical microenvironment was modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increased tissue density, albumin secretion, and CYP3A4 activity but also upregulated inflammatory markers. Basal inflammatory markers were lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibited the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA-seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.

2.
Biofabrication ; 13(4)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34479229

RESUMO

Microphysiological systems (MPS), comprising human cell cultured in formats that capture features of the three-dimensional (3D) microenvironments of native human organs under microperfusion, are promising tools for biomedical research. Here we report the development of a mesoscale physiological system (MePS) enabling the long-term 3D perfused culture of primary human hepatocytes at scales of over 106cells per MPS. A central feature of the MePS, which employs a commercially-available multiwell bioreactor for perfusion, is a novel scaffold comprising a dense network of nano- and micro-porous polymer channels, designed to provide appropriate convective and diffusive mass transfer of oxygen and other nutrients while maintaining physiological values of shear stress. The scaffold design is realized by a high resolution stereolithography fabrication process employing a novel resin. This new culture system sustains mesoscopic hepatic tissue-like cultures with greater hepatic functionality (assessed by albumin and urea synthesis, and CYP3A4 activity) and lower inflammation markers compared to comparable cultures on the commercial polystyrene scaffold. To illustrate applications to disease modeling, we established an insulin-resistant phenotype by exposing liver cells to hyperglycemic and hyperinsulinemic media. Future applications of the MePS include the co-culture of hepatocytes with resident immune cells and the integration with multiple organs to model complex liver-associated diseases.


Assuntos
Técnicas de Cultura de Células , Hepatócitos , Alicerces Teciduais , Humanos , Fígado , Estereolitografia
3.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514545

RESUMO

Slow progress in the fight against neurodegenerative diseases (NDs) motivates an urgent need for highly controlled in vitro systems to investigate organ-organ- and organ-immune-specific interactions relevant for disease pathophysiology. Of particular interest is the gut/microbiome-liver-brain axis for parsing out how genetic and environmental factors contribute to NDs. We have developed a mesofluidic platform technology to study gut-liver-cerebral interactions in the context of Parkinson's disease (PD). It connects microphysiological systems (MPSs) of the primary human gut and liver with a human induced pluripotent stem cell-derived cerebral MPS in a systemically circulated common culture medium containing CD4+ regulatory T and T helper 17 cells. We demonstrate this approach using a patient-derived cerebral MPS carrying the PD-causing A53T mutation, gaining two important findings: (i) that systemic interaction enhances features of in vivo-like behavior of cerebral MPSs, and (ii) that microbiome-associated short-chain fatty acids increase expression of pathology-associated pathways in PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Parkinson , Encéfalo/metabolismo , Humanos , Fígado/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
4.
Med ; 2(1): 74-98.e9, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33511375

RESUMO

BACKGROUND: The gut microbiome plays an important role in human health and disease. Gnotobiotic animal and in vitro cell-based models provide some informative insights into mechanistic crosstalk. However, there is no existing system for a long-term co-culture of a human colonic mucosal barrier with super oxygen-sensitive commensal microbes, hindering the study of human-microbe interactions in a controlled manner. METHODS: Here, we investigated the effects of an abundant super oxygen-sensitive commensal anaerobe, Faecalibacterium prausnitzii, on a primary human mucosal barrier using a Gut-MIcrobiome (GuMI) physiome platform that we designed and fabricated. FINDINGS: Long-term continuous co-culture of F. prausnitzii for two days with colon epithelia, enabled by continuous flow of completely anoxic apical media and aerobic basal media, resulted in a strictly anaerobic apical environment fostering growth of and butyrate production by F. prausnitzii, while maintaining a stable colon epithelial barrier. We identified elevated differentiation and hypoxia-responsive genes and pathways in the platform compared with conventional aerobic static culture of the colon epithelia, attributable to a combination of anaerobic environment and continuous medium replenishment. Furthermore, we demonstrated anti-inflammatory effects of F. prausnitzii through HDAC and the TLR-NFKB axis. Finally, we identified that butyrate largely contributes to the anti-inflammatory effects by downregulating TLR3 and TLR4. CONCLUSIONS: Our results are consistent with some clinical observations regarding F. prausnitzii, thus motivating further studies employing this platform with more complex engineered colon tissues for understanding the interaction between the human colonic mucosal barrier and microbiota, pathogens, or engineered bacteria.


Assuntos
Faecalibacterium prausnitzii , Oxigênio , Animais , Anti-Inflamatórios/metabolismo , Butiratos/metabolismo , Colo/metabolismo , Humanos , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...